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It is known that the surface of machine parts is rough. The roughness 
changes the state of stress in the neighborhood of the surface as com- 
pared with the case of an ideal smooth surface. 

The present paper is devoted to the clarification of the question of 
the magnitude of these changes. The rough surface is considered as the 
realization of a homogeneous statistically anisotropic random field 
with a normal law of distribution. 

It is assnmed that the material of the elastic body is isotopic. 

1. We consider an elastic semi-space z >,N(x, y), subjected at in- 
finity t - Q) to the action of normal stresses ol and u2 (IQ. 1). 

We assume that the boundary of the semi-space E = H(r, y) differs 
little from the plane z = 0. Moreover, we assume the boundary stress- 
free 

Here ox, uy, Txy etc. are the components of 
yl, yg and yt are the direction cosines of the 
face z = ff(x, y). The latter, with an accuracy 
first order with respect to H are 

the stress tensor; and 
outer normal to the sur- 
UP to the magnitudes of 

T1=,,, n=ay* ys==-1 (1.2) 

1479 



1480 V.A. Pal ‘mov 

We write the expressions for the stresses at z = H(x, y) by means of 
expansions 

~Xlz=H=~Jr=O+H~ _t... I etc. (1.3) 

We substitute (1.3) and (1.2) into (1.1) and write the boundary con- 
ditions on the free surface with an accuracy UP to the magnitudes of 
first order with respect to H and its de- 
rivatives 

aff at 
z zy = zw ax -+6vag-H+ for z=O 

The stresses we are seeking must 
satisfy the boundary conditions (1.4), the 

Fig. 1. 

loading conditions at infinity (Z - ~0) and the entire system of eoua- 
tions in terms of stresses of the theory of elasticity. We find the solu- 
tion of the problems by the method of successive approximations, taking 
as the first approximation the solution of the problem for H = 0. 
Obviously in this case we have in the entire region occupied by the body 

6x = 61, al/ = 62, 6z = 0; T q/ = 0, zx*=o, %* = 0 (1.5j 

We take the second approximation in the form 

For determination of stresses o,(l) and u (‘) etc., we have the 
boundary conditions 

Y 

z (1) = cJ1 !$ , aFl 
(1) _ - 

xz ry* - aa ay ’ 
ct z (1) = 0 for z = 0 (1.7) 

which are obtained by substituting the stresses of the first approxima- 
tion on the right-hand sides of (1.4); we have also the condition of 
u (l), u (I) etc. becoming zero for z - a. These conditions correspond 
tz the problem of the action of tangential stresses on a semi-space. In 
[ll it s solution is given in the form 
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Here m is Poi~son’s ratio, and yl and yz are harmonic functions in 
the semi-space I > 0, tending to zero for I - Q, and satisfying the 

boundary conditions for z = 0 

a291 ----z &2 - 
(1) = u %!i !?!s t3H 

zx 1 ax ’ a22 = %y 
(1) = CT2 - 

8Y t-w 
Assume that the stresses in the second approximation are found. How- 

ever, not one of them, separately, fully characterizes the state of 

stress. But in computing the coefficient of the stress concentration it 
is desirable to introduce some single invariant characteristic of the 
state of stress. Such a characteristic, at least for plastic materials, 
is the intensity of shear stresses T, which is determined by the follow- 
ing formula (see, for example, CZI): 

T= ;6 ~- t (CT, - uJ* 4 (uu + cQ2 + (uz - u_J” f 6 (zx; + 2,; + ~x:H'iz (l.fO) 

We substitute into (1.10) the expressions for the Stresses from (1.6) 

and, assuming the disturbances 0% (If, o (11 

ize the result. In the formula obtainedY 

etc. to be small, we linear- 

T = T, + k. [(2a, - ciz) (rxil) + (2a, - GJ c+‘)j (1.11) 

T, represents the value of the intensity of shear stresses in the 
absence of disturbances 

2. Assume that the surface z = H(x, y) represents a random homogene- 
ous anisotropic field (see [31) with zero value of the mathematical ex- 
pectation. The correlation function of such a field 
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depends only on the differences x - xl and y - yl, and the field itself 
admits a spectral decomposition 

H (2, y) = 1 ei(p”A”y)V (p.,v) dp dv 
--co 

(2.2) 

Here V(p, v) is a random function of the arguments p and v with zero 
value of the mathematical expectation and the correlation function 

M [v* QL v)V (I.G, vdl = S (p,v, 6 (p - pl) 6 (v -vl) (2.3) 

where ML.. .I denotes the operation of mathematical expectation, 6 is 
the delta function, and the star denotes the complex-conjugate magnitude. 
The nonrandom function S(p, v) is called the spectral density of the 
homogeneous random field H(x, y). 

Substituting H from (2.2) into (1.9), we obtain the boundary condi- 
tions 

@$I a a202 O3 ----_ 
a.22 - 1 ss ipei(~x+Y%‘dpdv, p = Q 

ss 
ivei(~x+Y~)Vdpdv when z = 0 (2.4) 

-a7 --oo 

With their aid one finds easily the harmonic functions in the semi- 
space 2 > 0 

exp I-- zvpc2 +vz+ i&z+ w)ldpdv 

exp k-z~p2+v2+i(p~tvy)]dpdv 

(2.5) 

In investigating the stress concentration, the greatest interest 
lies in the knowledge of the stresses on the boundary of the semi-space. 
The latter coincide with an accuracy up to 
magnitudes of first order, with the values of 
the same stresses for z = 0. Therefore, we 
give the expressions for ox(‘) and Us for 
z=o 

03 

v2 p%, + v 2u2 ei(lLX+YY) 
(3 

x 
(1) = 2 ‘iS[ c 

P% + m I p+va ~ 
-03 

Jfp2 + v2 Vd@v 

03 
a a 2 

uY 
(1) = 2 

y . . v2a2+ k 
etc. 

Vdydv 

(2.6) Fig. 2. 
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Introducing the expressions found for the disturbances into (l.ll), 
we obtain the value of the intensity of the shear stresses on the sur- 
face of the elastic body 

T = TO-+ & 1 D (p, Y) ei(pLX+‘“)Vdpdv 

--^*‘I 
(2.7) 

The function go has the following form: 

Q (p, v) = 
2pL”a,2 + 2v%,2 - (p2 + v2) o,a, 

(p2 + v2)“Z + 

I 1. (p201 + YQ2) [(2o, - 02) v2 + 032 - Cl) P21 
(2.8) 

“. 
’ ?n 

The mathematical expectation and the dispersion T are written with 
the aid of formulas (2.7) and (2.3) as 

Al WI 

As the coefficient of stress concentration we take the magnitude 

D’iZ 
U=i$2T 

0 

3. Let the surface z = H(x, y) be generated by a translation motion 
of the curve 

2 = H, (8 (3.1) 

along the q-axis. The position of the ‘7’ and g-axes is shown in Fig. 2. 

The cylindrical surface obtained is a sufficiently good idealization 
of the real surface of machine parts after machining (shaping, milling 
and grinding). 

We assume that the function HI(c) is the so-called stationary random 
function of the argument 5. We denote its correlation function by 

KI(g - El). and the spectral density by SI(o). Between them there exists 
the known relation (see [31) 

1 9o 
S,(a) = z s K, (E) e-i04dt, KI (E) = [ S, (61) eiw4do (3.2) 

-33 -03 

The surface z = H(z, y) is cylindrical, therefore the correlation 
function of the random field H(x, y) has the form 

A- (z - ~1, Y - YJ = A, (E - El) (3.3) 
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whereby 5. q and X, y are connected 

E = XCQS8 ttysinlf, 

5 = Ecos0 - qsiA8, 

Let us find the spectral density 
fiAitiOn [3f 

Lu 

Pa 2 ‘)nov 

by the relations 

q =ycosa - zsin8 f3.4) 
y = E sin0 + q case (3.5) 

of the random field ff(r, y). By de- 

(3.8) 

IOe Substitute here the expression for the correlation function from 
(3.3) and integrate with respect to the variables 5 and q 

03 

s(I"r9 = $5 
xl (E) ,iE@cos%+r ain@ 

& y 
e-Prlfvcos e--p sin 6jdri 

f3.71 
4 -co 

The first integral by virtue of (3.2) is 

SE Qk COsQ +Y sint3) 

the second integral is the delta function 

6(V case --psiA8) 

Thus we obtain 

S(~,Y) =S~&cosC) +v s~ne)8(4 CosC! -p,sinQf (3*8f 

With the aid of (3.8) we calculate according to (2.9) the diSPerSiOA 

T; we have 

1 cs 
a=?j@ 1 

~~~~~~~l(~oos8 -k YsiIf8ts(vcos8--ssinBfdILdv (3.91 

Integrating with respect to v, we obtain 

(3.10) 

fntroducfng a new. variable (5 by means of the relation @ = 0 COB 8, 
we obtain 

1 O” 
D=m s 

~2(0c0S6,0sine)S,(o)do (3.12) 

--ocI 

Since qq'p, v> is a homogeneous function of first degree with respect 
to its argument, and at the same time an even fuction, the relation 

cfl (w cns0 I 0 sin@) == j 63 1 @.D (COS8, sin0) (3.12) 
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is true; this permits us to write D in the form 

trxJ 

D= 
W (cos 6, sin 6) 

9T02 s 
02S1 (CO) do (3.13) 

--oo 

The integral, by virtue of the second formula (3.2). is expressed 
through the derivative of the correlation function thus 

We eliminate the derivative K, by means of the formula (see [41) 

I I 
‘ia 

4=0 
(3.15) 

which gives the 
sections of the 

mathematical expect at ion of the mean number of inter- 
zero level of the normal random function H, ($) . Denoting 

00 

s d=Kl (E) 
02S1 (co) dw = - dEa 

E=a 
--co 

(3.14) 

Fig. 4. 

by h the mean square value of the function if,(<), we find 

03 

s 
oaSl (w) do = (nnl~)~ 

Substituting (3.16) into (3.13) we obtain 

D= 
Q2 (co;;i2sin 8) (nnh)a 

(3.16) 

(3.17) 

Then we determine the mean square value T 

(3.17) 
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where 

II = 1 Q (~0s 8, sin e) I = 1 
3T,= ‘J,z + 622 - Gg3, 20,x ~0.3 e + 2~2 sin2 e - alo, + 

+ 
u1 co9 e + 0% sin2 e 

m 
[(ILo, - oz) sin2 e + (2a, - UJ cosa 01 (3.19) 

The expression for the concentration coefficient is found by (2.10) 

a = 1 + 2nnhx ,(3.20) 

Since the concentration coefficient depends on 6, it is possible to 
diminish it by selecting 8. and consequently the direction of machining. 
From (3.19) it follows that to each value of the ratio o /o, there cor- 
responds a definite value 8 = 8, on the interval CO, 90 oB , for which the 
minimum x = xl is obtained, and therefore the minimum of the concentrated 
coefficient. The relation x = x1(cr2/u1) and 6 = 6,((r,/al) in the assump- 
tion lug/ < loll, m = 4 are shown in Figs. 3 and 4. There are also shown, 
for comparison, the relations x = xz(a2/u1) and 8 = 8g(uz/al) correspond- 
ing to the maximum value of the concentration coefficient. From Fig. 4 
follows an approximate conclusion: for given ul and uz the minimum value 
of x, and consequently of the concentration coefficient, is obtained 
when the generatrix of the cylindrical surface z = H(x, y) coincides 
with the direction of the maximum value of the stress (ul or ug). This 
means that minimum a is obtained when the direction of the machining CO- 

incides with the line of action of the maximal principal stress in the 
undisturbed stress field. 

We give expressions for the concentration coefficient of Strew% for 

some special cases of undisturbed state of stress and orientation of the 
direction of machining. 

a) All-sided uniform tension (al = az) 

b) Uniaxial 
to the line of 

c) State of 
with the line 

4. Let the 
tropic. It is 

rX=1+2nnh(1+~) (3.21) 

tension (a2 = 0); direction of machining perpendicular 
action of stress UI(0 = 0) 

a=1+23&2(2-4) (3.22) 

pure shear; direction of machining makes au angle of 45’ 
of action of one of the principal stresses 

a z 1. + 2nnh (3.23) 

homogeneous random field H(x, y) be statistically iSO- 

known [33 that the correlation function of such a field 
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depends only on the distance between the points of observation r, and 
the spectral density depends only on the magnitude o 

In the case of such a form of the spectral density the eXl?reSSiOn 

for I) by (2.9) may be substantially simplified. 

Substitute S from (4.1) into (2.9). In calculating the integral ob- 
tained, it is expedient to use polar coordinates, setting 

p -1: w cos cp, v = (0 sin ‘p (4.2) 

and using property (3.12) of the function cp(~, v). Then D becomes 

(4.3) 

The second integral is easily calculated if one uses the representa- 
tion 

W (cos cp, sin q) = h, sins cp + b, sins g, cos2 v + 

i- b, sin” cp cos* q JL b, sin2 cp CDs* ‘p + by cOseq (4.4) 

and applies the integral 

‘IT. 

5 sinam cp cos Y-lr@&B($, +) 
0 

(4.5) 

Here B is the Euler beta function. 

The final expression of the second integral in (4.3) is 

%r. 

c @’ (cos cp, sin (p) dq = g (35b, $ 5b, f 36, f 5b, f 35 b,) (4.9) 
.I 
0 

The coefficients &i have the form 

b,, = A’, b,:=4(l+$-)AC, b, =4(1 + ;)zcz+ 2AB 

b,z4 (1+&+X, ba=Ba (4.7) 

where 
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The first integral in 

za, - 02 1 B .= o1 20, - a, + ( 20, - o1 
m ’ m 

1 
c = 612 + 622 - 6152 (4.8) 

(4.3) gives a simple expression in directly 
measurable statistical characteristics of the Profile of the rough sur- 
face. To show this we write the correlation function of the field 

(4.9) 

Substituting for the spectral density of the field from (4. I), and 
introducing polar coordinates (4.2) and x = r cos y, y = r sin w, we 
find 

K (z, y) = K (F) = ~s(O)~d.~ 
eiorcos (rp-+t) Q (4.10) 

0 0 

The second derivative of the correlation function K(r) for r = 0 
enters into (4.3) 

K” (0) = - x * 63s (0) dw 
\ 

(4.1 
. 
0 

Noting that the function K(r) 
coincides with the correlation 
function of the ordinates of the 
profile of the rough surface, we 
eliminate it from (4.11) by means 
of a formula analogous to (3.15). 
As a result we obtain 

1) 

M 

613 s (0) do = $ (JQ&)2 (4.12) 

Here h is the mean square value of the field H(x, y), and n is the 
mathematical expectation of the mean number of intersections of the zero 
level by the profile of the rough surface. According to the above 
formula (4.12), as well as (3.15), this holds true for a random field H 
with a normal law of distribution. 

Introducing the integrals (4.12) and (4.6) into (4.3), we find 

2) = (~n~~ox)z, x= &% (3% + 5b, + 3b, + 5b, + 35b,)‘!2 (4.13) 
0 
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which, in agreement with (2. lo), gives the following expression for the 

concentration coefficient of the stresses: 

a = 1 + 2nnhx (4.14) 

The result of computing x for m = 4 and various values of the ratio 

og/oI is given in Fig. 5. 

In conclusion we remark that the formulas (3.21). (3.22), (3.23). 

(3.20) and (4.14) are convenient in practical calculations, since they 

contain easily measurable statistical characteristics of the profile of 

the rough surface. 
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